Super-resolved parallel MRI by spatiotemporal encoding.
نویسندگان
چکیده
Recent studies described an "ultrafast" scanning method based on spatiotemporal (SPEN) principles. SPEN demonstrates numerous potential advantages over EPI-based alternatives, at no additional expense in experimental complexity. An important aspect that SPEN still needs to achieve for providing a competitive ultrafast MRI acquisition alternative, entails exploiting parallel imaging algorithms without compromising its proven capabilities. The present work introduces a combination of multi-band frequency-swept pulses simultaneously encoding multiple, partial fields-of-view, together with a new algorithm merging a Super-Resolved SPEN image reconstruction and SENSE multiple-receiving methods. This approach enables one to reduce both the excitation and acquisition times of sub-second SPEN acquisitions by the customary acceleration factor R, without compromises in either the method's spatial resolution, SAR deposition, or capability to operate in multi-slice mode. The performance of these new single-shot imaging sequences and their ancillary algorithms were explored and corroborated on phantoms and human volunteers at 3 T. The gains of the parallelized approach were particularly evident when dealing with heterogeneous systems subject to major T2/T2* effects, as is the case upon single-scan imaging near tissue/air interfaces.
منابع مشابه
Functional MRI using super-resolved spatiotemporal encoding.
Recently, new ultrafast imaging sequences such as rapid acquisition by sequential excitation and refocusing (RASER) and hybrid spatiotemporal encoding (SPEN) magnetic resonance imaging (MRI) have been proposed, in which the phase encoding of conventional echo planar imaging (EPI) is replaced with a SPEN. In contrast to EPI, SPEN provides significantly higher immunity to frequency heterogeneitie...
متن کاملIn vivo 3D spatial/1D spectral imaging by spatiotemporal encoding: a new single-shot experimental and processing approach.
A novel method for acquiring and processing quality multislice spectroscopically resolved 2D images in a single shot is introduced and illustrated. By contrast to the majority of single-scan spectroscopic imaging sequences developed so far, the method here discussed is not based on the acquisition of echo planar data in the k/t-space, but rather on the use of recently proposed spatiotemporal en...
متن کاملParametric analysis of the spatial resolution and signal-to-noise ratio in super-resolved spatiotemporally encoded (SPEN) MRI.
PURPOSE Spatiotemporally Encoded (SPEN) MRI is based on progressive point-by-point refocusing of the image in the spatial rather than the k-space domain through the use of frequency-swept radiofrequency pulses and quadratic phase profiles. This technique provides high robustness against frequency-offsets including B0 inhomogeneities and chemical-shift (e.g., fat/water) distortions, and can cons...
متن کاملRegularization in Parallel Imaging Reconstruction
INTRODUCTION The recent advance of the parallel MRI technology, which utilizes multiple RF receiver array coils [1], has also demonstrated the capability to enhance the spatiotemporal resolution of MRI [2, 3]. In parallel MRI, there exist two major sources in image reconstruction: the first is the reduced data samples in accelerated scans compared to the unaccelerated scans. The second source o...
متن کاملFast dynamic parallel phase contrast MRI with high acceleration factors and optimized SNR
Introduction: Time-resolved phase contrast (PC) MRI is important for many clinical applications and requires fast data acquisition. In order to increase spatiotemporal resolution or reduce total acquisition times, parallel imaging techniques such as kt-SENSE, kt-BLAST [1] and kt-Grappa [2] have been introduced. For kt-BLAST/ kt-SENSE it has been shown that high reduction factors of the order of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance imaging
دوره 32 1 شماره
صفحات -
تاریخ انتشار 2014